Lesson Plan for Course: B.Sc (Sem-I) (DSC) Code: MTMGCOR01T Credit: 6

- Course Name: Differential CalculusCourse coordinator: Dr. Pintu Debnath
- Course Outcomes:
 - CO-1. Learn ϵ and δ definition of limit and continuity of a real-valued function.
 - CO-2. Apply Leibnitz's theorem to derive successive differentiation.
 - CO-3. Concept of Euler's theorem and its application on homogeneous function.
 - CO-4. Able to find out tangents, normals, curvature, asymptotes, singular points of any curves.
 - CO-5. To understand Rolle's theorem and several mean value theorems and their applications including the problems related to maxima minima and indeterminate form.

Month	Course Topic	Teacher	Class-hour	Remarks*
Nov	Tangents and normals.	BS	08	Theoretical – 07
				Tutorial - 01
	Rolle's theorem, Mean Value	SM	05	Theoretical – 04
	theorems, Taylor's theorem with			Tutorial - 01
	Lagrange's and Cauchy's forms of			
	remainder,			
	Limit and Continuity (ϵ and δ	PD	06	Theoretical – 05
	definition), Types of			Tutorial - 01
	discontinuities.			
Dec	Curvature, Asymptotes.	BS	06	Theoretical – 05
	V 2			Tutorial - 01
	Taylor's series, Maclaurin's series	SM	04	Theoretical – 02
	of $\sin x$, $\cos x$, e^x , $\log(l+x)$,			Tutorial - 02
	$(l+x)^n$.			
	Differentiability of functions,	PD	04	Theoretical – 03
	Successive differentiation,			Tutorial - 01
	Leibnitz's theorem.			
	1 st Inter	nal Assessm	ent	
	Asymptotes, Singular points.	BS	06	Theoretical – 04
				Tutorial - 02
	Maxima and Minima.	SM	03	Theoretical – 02
				Tutorial - 01
	Partial differentiation.	PD	04	Theoretical – 03
		D.G.	0.2	Tutorial - 01
Jan	Tracing of curves. Parametric	BS	02	Theoretical – 02
	representation of curves and			
	tracing of parametric curves.			
	Indeterminate forms.	SM	02	Theoretical – 02
	Euler's theorem on homogeneous	PD	03	Theoretical – 03
	functions.			
		nal Assessm	ent	
	Revision	BS	02	Theoretical – 06
		SM	02	Tutorial - 00
		PD	02	
	End Seme	ster Examir	nation	
	Assessment: Internal Assessment &		Total: 59	Theoretical – 48
	Assignment		Hrs	Tutorial - 11

- ➤ B. Pal, S. Raychowdhury, S. Jana, Differential Equation, Semester-III, Santra Publication Pvt. Ltd., Kolkata-700073.
- > S. K. MAPA, Introduction to Real Analysis, Sarat Book Distributor, India, 2019.

Lesson Plan for Course: B.Sc(Sem-I) (GE) Code: MTMHGEC01T Credit: 6

- Course Name: Differential CalculusCourse coordinator: Dr. Sudip Mondal
- Course Outcomes:
 - CO-1. Learn ϵ and δ definition of limit and continuity of a real-valued function.
 - CO-2. Apply Leibnitz's theorem to derive successive differentiation.
 - CO-3. Concept of Euler's theorem and its application on homogeneous function.
 - CO-4. Able to find out tangents, normals, curvature, asymptotes, singular points of any curves.
 - CO-5. To understand Rolle's theorem and several mean value theorems and their applications including the problems related to maxima minima and indeterminate form.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Nov	Tangents and normals.	BS	08	Theoretical – 07 Tutorial - 01
	Rolle's theorem, Mean Value	SM	05	Theoretical – 04
	theorems, Taylor's theorem with			Tutorial - 01
	Lagrange's and Cauchy's forms of			
	remainder.			
	Limit and Continuity (ϵ and δ	PD	06	Theoretical – 05
	definition), Types of			Tutorial - 01
	discontinuities.		_	
Dec	Curvature, Asymptotes.	BS	06	Theoretical – 05 Tutorial - 01
	Taylor's series, Maclaurin's series	SM	04	Theoretical – 02
	of $\sin x$, $\cos x$, e^x , $\log(l+x)$, $(l+x)^n$.			Tutorial - 02
	Differentiability of functions,	PD	04	Theoretical – 03
	Successive differentiation,			Tutorial - 01
	Leibnitz's theorem.			
	1 st Inter	nal Assessm	ent	
	Asymptotes, Singular points.	BS	06	Theoretical – 04 Tutorial - 02
	Maxima and Minima.	SM	03	Theoretical – 02
	Waxina and William.	21.1		Tutorial - 01
	Partial differentiation.	PD	04	Theoretical – 03
				Tutorial - 01
Jan	Tracing of curves. Parametric	BS	02	Theoretical – 02
	representation of curves and			
	tracing of parametric curves.	CM	02	The same (1 = 1 = 02
	Indeterminate forms.	SM	02	Theoretical – 02
	Euler's theorem on homogeneous functions.	PD	03	Theoretical – 03
		nal Assessm	ent	
	Revision	BS	02	Theoretical – 06
		SM	02	Tutorial - 00
		PD	02	
	End Seme	ster Examin	nation	
	Assessment: Internal Assessment &		Total: 59	Theoretical – 48
	Assignment		Hrs	Tutorial - 11

- ▶ B. Pal, S. Raychowdhury, S. Jana, Differential Equation, Semester-III, Santra Publication Pvt. Ltd., Kolkata-700073.
- S. K. MAPA, Introduction to Real Analysis, Sarat Book Distributor, India. 2019.

Lesson Plan for Course: B.Sc (Sem-III) (DSC) Code: MTMGCOR03T Credit: 6

Course Name: Real AnalysisCourse coordinator: Biswajit Sarkar

• Course Outcomes:

CO-1. Understand some properties of sets in \mathbb{R} .

CO-2. Able to solve problems realted with real sequence.

CO-3. Learn about infinite series and their tests of convergence.

CO-4. To understand about Sequences and series of functions.

CO-5. Able to find radius of convergence of power series.

Month	Course Topic	Teacher	Class-hour	Remarks*		
Sept	Finite and infinite sets, examples of countable	BS	04	Theoretical – 03		
	and uncountable sets, Real line, bounded sets,			Tutorial - 01		
	suprema and infima.					
	Real Sequence.	SM	06	Theoretical – 05		
				Tutorial - 01		
	Infinite series. Cauchy convergence criterion for	PD	03	Theoretical – 02		
	series.			Tutorial - 01		
Oct	Completeness property of R, Archimedean	BS	02	Theoretical – 01		
	property of R, intervals.			Tutorial - 01		
	Bounded sequence.	SM	06	Theoretical – 05		
				Tutorial - 01		
	Positive term series, geometric series.	PD	03	Theoretical – 02		
				Tutorial - 01		
Nov	Concept of cluster points and statement of	BS	03	Theoretical – 02		
	Bolzano-Weierstrass theorem.			Tutorial - 01		
	Cauchy convergence criterion for sequences.	SM	06	Theoretical – 05		
				Tutorial - 01		
	Comparison test, convergence of p-series,	PD	02	Theoretical – 01		
	Root test, Ratio test,			Tutorial - 01		
	1 st Internal Assessment					
	Cauchy's theorem on limits, order	BS	03	Theoretical – 02		
	preservation and squeeze theorem.			Tutorial - 01		
	Sequences and series of functions, Pointwise	SM	07	Theoretical – 06		
	and uniform convergence.			Tutorial - 01		
	Alternating series, Leibnitz's test (Tests of	PD	03	Theoretical – 02		
	Convergence without proof).			Tutorial - 01		
Dec	Monotone sequences and their convergence	BS	03	Theoretical – 02		
	(monotone convergence theorem without proof).			Tutorial - 01		
	Power series and radius of convergence.					
	M_n -test, M-test, Statements of the results	SM	14	Theoretical – 13		
	about uniform convergence and integrability			Tutorial - 01		
	and differentiability of functions.					
	Definition and examples of absolute and	PD	06	Theoretical – 05		
	conditional convergence of infinite series.	12	00	Tutorial - 01		
	2 nd Internal A	ssessment		10001101 01		
Jan	Revision	BS	02			
J 4111		SM	02			
		PD	02			
	End Semester I					
	Assessment: Internal Assessment &		Total: 77	Theoretical – 62		
	Assignment		Hrs	Tutorial - 15		
	1					

- ➤ B. Pal, S. Raychowdhury, S. Jana, Differential Equation, Semester-III, Santra Publication Pvt. Ltd., Kolkata-700073.
- > S. K. MAPA, Introduction to Real Analysis, Sarat Book Distributor, India, 2019.

Lesson Plan for Course: B.Sc (Sem-III) (DSC) Code: MTMSSEC01M Credit: 6

- Course Name: C-Programming Language
- Course coordinator: Biswajit Sarkar
- Course Outcomes:
 - CO-1. Learn high-level programming languages.
 - CO-2. Able to construct flowchart.
 - CO-3. To know about some arithmetic operators and logical operators.
 - CO-4. Able to use for loop, while loop and do-while loop in C-programming.
 - CO-5. Capable to write programming for finding out maximum, minimum of a given set of numbers.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Sept	Unit-1: Basics of Computer Programming	SM	03	Theoretical-02
				Tutorial-01
Oct	Unit-2: Fundamentals of Programming	SM	03	Theoretical-02
				Tutorial-01
Nov	Unit-2: Fundamentals of Programming	SM	01	Theoretical-01
Dec	Unit-3: Statements	SM	03	Theoretical-02
				Tutorial-01
	End Semester Examin	nation (By I	Department)	
	Assessment: Assignment		Total: 10	Theoretical-07
	-		Hrs	Tutorial-03

- Yashavant Kanetkar, Let Us C, BPB Publications, 2016.
- ➤ Kamthane AN. Programming in C, 2/e. Pearson Education India; 2011.
- ➤ Satbir Mehla, Vishakha Gupta, M.L. Jain, Amit Sehgal, New College Programming in C and Numerical Methods For B.A./B.Sc., Jeevansons Publications, India, Ninth Revised Edition, 2015

Lesson Plan for Course: B.Sc(Sem-III) (GE) Code: MTMHGEC03T Credit: 6

• Course Name: Real Analysis

• Course coordinator: Dr. Pintu Debnath

• Course Outcomes:

CO-1. Understand some properties of sets in \mathbb{R} .

CO-2. Able to solve problems realted with real sequence.

CO-3. Learn about infinite series and their tests of convergence.

CO-4. To understand about Sequences and series of functions.

CO-5. Able to find radius of convergence of power series.

Month	Course Topic	Teacher	Class-hour	Remarks*
Sept	Finite and infinite sets, examples of	BS	04	Theoretical – 03
	countable and uncountable sets, Real line,			Tutorial - 01
	bounded sets, suprema and infima.			
	Real Sequence.	SM	06	Theoretical – 05
	•			Tutorial - 01
	Infinite series. Cauchy convergence	PD	03	Theoretical – 02
	criterion for series.			Tutorial - 01
Oct	Completeness property of R, Archimedean	BS	02	Theoretical – 01
	property of R, intervals.			Tutorial - 01
	Bounded sequence.	SM	06	Theoretical – 05
				Tutorial - 01
	Positive term series, geometric series.	PD	03	Theoretical – 02
				Tutorial - 01
Nov	Concept of cluster points and statement of	BS	03	Theoretical – 02
	Bolzano-Weierstrass theorem.			Tutorial - 01
	Cauchy convergence criterion for	SM	06	Theoretical – 05
	sequences.			Tutorial - 01
	Comparison test, convergence of p-	PD	02	Theoretical – 01
	series, Root test, Ratio test,			Tutorial - 01
		Assessment		
	Cauchy's theorem on limits, order	BS	03	Theoretical – 02
	preservation and squeeze theorem.			Tutorial - 01
	Sequences and series of functions,	SM	07	Theoretical – 06
	Pointwise and uniform convergence.			Tutorial - 01
	Alternating series, Leibnitz's test (Tests of	PD	03	Theoretical – 02
	Convergence without proof).			Tutorial - 01
Dec	Monotone sequences and their convergence	BS	03	Theoretical – 02
	(monotone convergence theorem without proof).			Tutorial - 01
	Power series and radius of convergence.	~~ -		
	M_n -test, M-test, Statements of the results	SM	14	Theoretical – 13
	about uniform convergence and integrability			Tutorial - 01
	and differentiability of functions.	P.D.	0.5	FB1 1 0.5
	Definition and examples of absolute and	PD	06	Theoretical – 05
	conditional convergence of infinite series.			Tutorial - 01
To-		Assessment		
Jan	Revision	BS	02	
		SM PD	02 02	
	End Semeste			
	Assessment: Internal Assessment &			Theoretical (2
	Assignment Assessment &		Total: 77 Hrs	Theoretical – 62 Tutorial - 15
	Assignment		пгя	1 utoriai - 15

- ➤ B. Pal, S. Raychowdhury, S. Jana, Differential Equation, Semester-III, Santra Publication Pvt. Ltd., Kolkata-700073.
- S. K. MAPA, Introduction to Real Analysis, Sarat Book Distributor, India. 2019.

Lesson Plan for Course: B.Sc (Sem-III) (GE) Code: MTMSSEC01M Credit: 6

- Course Name: C-Programming Language
- Course coordinator: Biswajit Sarkar
- Course Outcomes:
 - CO-1. Learn high-level programming languages.
 - CO-2. Able to construct flowchart.
 - CO-3. To know about some arithmetic operators and logical operators.
 - CO-4. Able to use for loop, while loop and do-while loop in C-programming.
 - CO-5. Capable to write programming for finding out maximum, minimum of a given set of numbers.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Sept	Unit-1: Basics of Computer Programming	SM	03	Theoretical-02
				Tutorial-01
Oct	Unit-2: Fundamentals of Programming	SM	03	Theoretical-02
				Tutorial-01
Nov	Unit-2: Fundamentals of Programming	SM	01	Theoretical-01
Dec	Unit-3: Statements	SM	03	Theoretical-02
				Tutorial-01
	End Semester Examin	nation (By I	Department)	
	Assessment: Assignment		Total: 10	Theoretical-07
	-		Hrs	Tutorial-03

- Yashavant Kanetkar, Let Us C, BPB Publications, 2016.
- ➤ Kamthane AN. Programming in C, 2/e. Pearson Education India; 2011.
- ➤ Satbir Mehla, Vishakha Gupta, M.L. Jain, Amit Sehgal, New College Programming in C and Numerical Methods For B.A./B.Sc., Jeevansons Publications, India, Ninth Revised Edition, 2015

Lesson Plan for Course: B.Sc (Sem-V) (DSC) Code: MTMGDSE01T Credit: 6

Course Name: Matrices

• Course coordinator: Dr. Sudip Mondal

Course Outcomes:

- CO-1. To form vector space and subspace over \mathbb{R} and to find their standard basis.
- CO-2. To conceptualize translation, dilation, rotation, reflection in a point, line and plane (in matrix form) and able to interpret eigen values and eigen vectors of these transformations including eigen spaces.
- CO-3. Able to calculate rank of matrices, to reduce in normal form and to solve linear homogeneous and non-homogeneous equations.
- CO-4. Able to reduce matrices to diagonal form through eigen values and eigen vectors.
- CO-5. Capable to applying elementary row operations to compute matrix rank and inverses, and to solve system of linear equations.

Month	Course Topic	Teacher	Class-hour	Remarks*
Sep	Unit-1: R, R2, R3 as vector spaces over R.	PD	04	Theoretical – 03
				Tutorial - 01
	Unit-2: Translation, Dilation.	BS	04	Theoretical – 03
				Tutorial - 01
	Unit-3: Types of matrices. Rank of a matrix.	SM	06	Theoretical – 05
	Invariance of rank under elementary			Tutorial - 01
	transformations.			
Oct	Unit-1: Standard basis for each of vector	PD	04	Theoretical – 03
	spaces R, R2, R3.			Tutorial - 01
	Unit-2: Rotation.	BS	07	Theoretical – 06
				Tutorial - 01
	Unit-3: Reduction to normal form.	SM	04	Theoretical – 03
				Tutorial - 01
Nov	Unit-1: Concept of Linear Independence and	PD	02	Theoretical – 01
	examples of different bases.		0.5	Tutorial - 01
	Unit-2: Reflection in a point, line and plane.	BS	02	Theoretical – 01
	T. 1. 2. G. 1	G) (0.2	Tutorial - 01
	Unit-3: Solutions of linear homogeneous and	SM	03	Theoretical – 02
	non-homogeneous equations with number of			Tutorial - 01
	equations and unknowns up to four.	Assessment		
	Unit-1: Subspaces of R2.	PD	03	Theoretical – 02
	Omt-1. Subspaces of R2.	ΓD	0.5	Tutorial - 01
	Unit-2: Matrix form of basic geometric	BS	05	Theoretical – 04
	transformations.	DS	0.5	Tutorial - 01
	Unit-4: Matrices in diagonal form. Reduction to	SM	04	Theoretical – 03
	diagonal form upto matrices of order 3.	SIVI	04	Tutorial - 01
Dec	Unit-1: Subspaces of R3.	PD	06	Theoretical – 05
Bee	ome it subspaces of its.	12		Tutorial - 01
	Unit-2: Interpretation of eigen values and	BS	08	Theoretical – 07
	eigen vectors for such transformations and			Tutorial - 01
	eigen spaces as invariant subspaces.			
	Unit-4: Computation of matrix inverses	SM	10	Theoretical – 09
	using elementary row operations. Rank of			Tutorial - 01
	matrix. Solutions of a system of linear			
	equations using matrices. Illustrative			
	examples of above concepts from Geometry,			
	Physics, Chemistry, Combinatorics and			
	Statistics.			
	- nd -	Assessment		

Semester: I III & V Department of Mathematics, Basirhat College, Session: Sept,2021 – Jan, 2022

Jan	Revision	PD BS	02 02	Theoretical – 06 Tutorial - 00
		SM	02	Tutoriai - 00
	End Semeste	r Examinati	on	
	Assessment: Internal Assessment &		Total: 78	Theoretical -63
	Assignment		Hrs	Tutorial - 15

- A.I. Kostrikin, *Introduction to Algebra*, Springer Verlag, 1984.
- S. H. Friedberg, A. L. Insel and L. E. Spence, *Linear Algebra*, Prentice Hall of India Pvt. Ltd., New Delhi, 2004.
- ➤ Richard Bronson, Theory and Problems of Matrix Operations, Tata McGraw Hill, 1989.
- S. K. MAPA, Higher Algebra, Sarat Book Distributor, India. 2019.

Lesson Plan for Course: B.Sc (Sem-V) (DSC) Code: MTMSSEC01M Credit: 6

- Course Name: C-Programming Language
- Course coordinator: Biswajit Sarkar
- Course Outcomes:
 - CO-1. To understand arrays and multi-dimensional arrays.
 - CO-2. Able to use arrays and multi-dimensional arrays in C-programming.
 - CO-3. To understand about functions.
 - CO-4. Capable to write programming by using functions.
 - CO-5. Able to write programming C languages like n!, nCr, etc.

Course planner

Month	Course Topic	Teacher	Class-hour	Remarks*
Sept	Unit-4: Arrays: Definition & requirement, declaration & initialization, indexing, one dimensional	BS	05	Theoretical-03 Tutorial-02
	array: finding maximum, minimum, Simple sorting and searching.			
Oct	Unit-5: Multi-dimensional arrays: Matrix Manipulations (Addition, Multiplication, Transpose)	BS	03	Theoretical-02 Tutorial-01
Nov	Unit-5: Multi-dimensional arrays: Arrays and Pointers, Memory allocation and deallocation: malloc() and free() functions.	SM	03	Theoretical-02 Tutorial-01
Dec	Unit-6: Functions: Why?, How to declare, define and invoke a function, Variables' scope, local& global variables and function parameters, Pointers, arrays as function parameters, return statement, Header files and their role. Illustrate different examples like swapping values, compute n!, nCr, find max/min from a list of elements, sort a set of numbers, matrix addition/ multiplication etc.	SM	05	Theoretical-03 Tutorial-02
	End Semester Examir Assessment: Assignment	nation (By I	Department) Total: 16	Theoretical-10
	Assessment. Assignment		Hrs	Tutorial-06

- Yashavant Kanetkar, Let Us C, BPB Publications, 2016.
- ➤ Kamthane AN. Programming in C, 2/e. Pearson Education India; 2011.
- ➤ Satbir Mehla, Vishakha Gupta, M.L. Jain, Amit Sehgal, New College Programming in C and Numerical Methods For B.A./B.Sc., Jeevansons Publications, India, Ninth Revised Edition, 2015.